How do Transfer Learning in Deep Learning Model – with an example – Day 30

Understanding Transfer Learning – The Challenges and Opportunities Introduction to Transfer Learning Transfer learning is a technique in machine learning where a model developed for one task is reused as the starting point for a model on a second task. This method is particularly useful when the second task has limited data, as it allows the model to leverage the knowledge it gained during the first task, thereby reducing the training time and improving performance. However, applying transfer learning effectively requires a deep understanding of both the original task and the new task, as well as how the model’s learned...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here