Can we make prediction without need of going through iteration ? yes with the Normal Equation _ Day 6

Understanding Linear Regression: The Normal Equation and Matrix Multiplications Explained Understanding Linear Regression: The Normal Equation and Matrix Multiplications Explained Linear regression is a fundamental concept in machine learning and statistics, used to predict a target variable based on one or more input features. While gradient descent is a popular method for finding the best-fitting line, the normal equation offers a direct, analytical approach that doesn’t require iterations. This blog post will walk you through the normal equation step-by-step, explaining why and how it works, and why using matrices simplifies the process. Table of Contents Introduction to Linear Regression Gradient Descent vs. Normal Equation Step-by-Step Explanation of the Normal Equation Step 1: Add Column of Ones Step 2: Transpose of X (XT) Step 3: Matrix Multiplication (XTX) Step 4: Matrix Multiplication (XTy) Step 5: Inverse of XTX ((XTX)-1) Step 6: Final Multiplication to Get θ Why the Normal Equation Works Without Gradient Descent Advantages of Using Matrices Conclusion Introduction to Linear Regression Linear regression aims to fit a line to a dataset, predicting a target variable $y$ based on input features $x$. The model is defined as: $$ y = \theta_0 + \theta_1 x $$ For multiple features, it generalizes...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Models based, Instance Models, Train-Test Splits: The Building Blocks of Machine Learning Explained – Day 3

In machine learning and deep learning, the concepts of Model vs Instance Models and Train-Test Split are closely intertwined. A model serves as the blueprint for learning patterns from data, while an instance model represents the specific realization of that blueprint after training. The train-test split, on the other hand, plays a critical role in the creation and evaluation of these instance models by dividing the dataset into subsets for training and testing. This blog post will delve into the relationship between these concepts,   first we explain model vs instance based and then we explain train- test spilt and provide two great examples to understand all we have explained better. These basics is mandatory to understand machine learning better:    Understanding Model-Based & Instance-Based Learning in Machine Learning Machine learning is a transformative technology that relies on various methods to teach computers how to learn from data and make predictions. Two fundamental approaches in this domain are model-based learning and instance-based learning. This blog post delves into these two learning paradigms, their differences, and how they relate to common issues like overfitting and underfitting. We will also explore how deep learning fits into this framework. Model-Based Learning Definition: Model-based...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here