Understanding Regularization in Deep Learning – Day 47

Understanding Regularization in Deep Learning – A Mathematical and Practical Approach Introduction One of the most compelling challenges in machine learning, particularly with deep learning models, is overfitting. This occurs when a model performs exceptionally well on the training data but fails to generalize to unseen data. Regularization offers solutions to this issue by controlling the complexity of the model and preventing it from overfitting. In this post, we’ll explore the different types of regularization techniques—L1, L2, and dropout—diving into their mathematical foundations and practical implementations. What is Overfitting? In machine learning, a model is said to be overfitting when it learns not just the actual patterns in the training data but also the noise and irrelevant details. While this enables the model to perform well on training data, it results in poor performance on new, unseen data. The flexibility of neural networks, with their vast number of parameters, makes them highly prone to overfitting. This flexibility allows them to model very complex relationships in the data, but without precautions, they end up memorizing the training data instead of generalizing from it. Regularization is the key to addressing this challenge. L1 and L2 Regularization: The Mathematical Backbone L1 Regularization (Lasso...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here