3 Types of Gradient Decent Types : Batch, Stochastic & Mini-Batch _ Day 8

Understanding Gradient Descent: Batch, Stochastic, and Mini-Batch Understanding Gradient Descent: Batch, Stochastic, and Mini-Batch Learn the key differences between Batch Gradient Descent, Stochastic Gradient Descent, and Mini-Batch Gradient Descent, and how to apply them in your machine learning models. Batch Gradient Descent Batch Gradient Descent uses the entire dataset to calculate the gradient of the cost function, leading to stable, consistent steps toward an optimal solution. It is computationally expensive, making it suitable for smaller datasets where high precision is crucial. Formula: \[\theta := \theta – \eta \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} J(\theta; x^{(i)}, y^{(i)})\] \(\theta\) = parameters \(\eta\) = learning...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

What is Gradient Decent in Machine Learning? _ Day 7

Mastering Gradient Descent in Machine Learning Mastering Gradient Descent: A Comprehensive Guide to Optimizing Machine Learning Models Gradient Descent is a foundational optimization algorithm used in machine learning to minimize a model’s cost function, typically Mean Squared Error (MSE) in linear regression. By iteratively adjusting the model’s parameters (weights), Gradient Descent seeks to find the optimal values that reduce the prediction error. What is Gradient Descent? Gradient Descent works by calculating the gradient (slope) of the cost function with respect to each parameter and moving in the direction opposite to the gradient. This process is repeated until the algorithm converges...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here