Understanding Gradient Clipping in Deep Learning – day 28
Understanding Gradient Clipping in Deep Learning Understanding Gradient Clipping in Deep Learning Introduction to Gradient Clipping Gradient clipping is a crucial technique in deep learning, especially when dealing with deep neural networks (DNNs) or recurrent neural networks (RNNs). Its primary purpose is to address the “exploding gradient” problem, which can severely destabilize the training process and lead to poor model performance. The Exploding Gradient Problem occurs when gradients during backpropagation become excessively large. This can cause the model’s weights to be updated with very large values, leading to instability in the learning process. The model may diverge rather than converge,...