Regression & Classification with MNIST. _ day 4

  A Comprehensive Guide to Machine Learning: Regression and Classification with the MNIST Dataset Introduction to Supervised Learning: Regression and Classification In the realm of machine learning, supervised learning involves training a model on a labeled dataset, which means the dataset includes both input data and the corresponding output labels. Supervised learning tasks can be broadly categorized into two types: regression and classification.     Regression tasks aim to predict continuous numerical values. For example, predicting house prices based on various features such as location, size, and number of bedrooms. The output is a continuous value that can range over an infinite set of possible values. Common regression algorithms include linear regression, decision trees, and support vector regression.     Classification, on the other hand, deals with predicting discrete categorical values. The goal is to assign input data to one of several predefined classes. For instance, classifying emails as either spam or not spam, or recognizing handwritten digits as one of the digits from 0 to 9. The output is a discrete value representing the class label. Popular classification algorithms include logistic regression, support vector machines, decision trees, and neural networks. The MNIST Dataset: A Benchmark for Classification The MNIST...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here