Momentum vs Normalization in Deep learning -Part 2 – Day 34

Comparing Momentum and Normalization in Deep Learning: A Mathematical Perspective Momentum and normalization are two pivotal techniques in deep learning that enhance the efficiency and stability of training. This article explores the mathematics behind these methods, provides examples with and without these techniques, and demonstrates why they are beneficial for deep learning models.  Comparing Momentum and Normalization Momentum: Smoothing and Accelerating Convergence Momentum is an optimization technique that modifies the standard gradient descent by adding a velocity term to the update rule. This velocity term is a running average of past gradients, which helps the optimizer to continue moving in...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Batch normalisation – trainable and non trainable – day 27

Demystifying Trainable and Non-Trainable Parameters in Batch Normalization Batch normalization (BN) is a powerful technique used in deep learning to stabilize and accelerate training. The core idea behind BN is to normalize the output of a previous layer by subtracting the batch mean and dividing by the batch standard deviation. This is expressed by the following general formula: \[\hat{x} = \frac{x – \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}\]\[y = \gamma \hat{x} + \beta\] Where: Why This Formula is Helpful The normalization step ensures that the input to each layer has a consistent distribution, which addresses the problem of “internal covariate shift”—where the distribution...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Batch normalisation part 2 – day 26

Introduction to Batch Normalization Batch normalization is a widely used technique in deep learning that significantly improves the performance and stability of neural networks. Introduced by Sergey Ioffe and Christian Szegedy in 2015, this technique addresses the issues of vanishing and exploding gradients that can occur during training, particularly in deep networks. Why Batch Normalization? In deep learning, as data propagates through the layers of a neural network, it can lead to shifts in the distribution of inputs to layers deeper in the network—a phenomenon known as internal covariate shift. This shift can cause issues such as vanishing gradients, where...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Batch Normalization – day 25

Understanding Batch Normalization in Deep Learning Understanding Batch Normalization in Deep Learning Deep learning has revolutionized numerous fields, from computer vision to natural language processing. However, training deep neural networks can be challenging due to issues like unstable gradients. In particular, gradients can either explode (grow too large) or vanish (shrink too small) as they propagate through the network. This instability can slow down or completely halt the learning process. To address this, a powerful technique called Batch Normalization was introduced. The Problem: Unstable Gradients In deep networks, the issue of unstable gradients becomes more pronounced as the network depth...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here