landscape photography of mountains covered in snow

Theory Behind 1Cycle Learning Rate Scheduling & Learning Rate Schedules – Day 43

  The 1Cycle Learning Rate Policy: Accelerating Model Training  In our pervious article  (day 42) , we have explained The Power of Learning Rates in Deep Learning and Why Schedules Matter, lets now focus on 1Cycle Learning Rate to explain it  in more detail :  The 1Cycle Learning Rate Policy, first introduced by Leslie Smith in 2018, remains one of the most effective techniques for optimizing model training. By 2025, it continues to prove its efficiency, accelerating convergence by up to 10x compared to traditional learning rate schedules, such as constant or exponentially decaying rates. Today, both researchers and practitioners are pushing the boundaries of deep learning with this method, solidifying its role as a key component in the training of modern AI models. How the 1Cycle Policy Works The 1Cycle policy deviates from conventional learning rate schedules by alternating between two distinct phases: Phase 1: Increasing Learning Rate – The learning rate starts low and steadily rises to a peak value (η_max). This phase promotes rapid exploration of the loss landscape, avoiding sharp local minima. Phase 2: Decreasing Learning Rate – Once the peak is reached, the learning rate gradually decreases to a very low value, enabling the model...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Transfer learning – day 29

Understanding Transfer Learning in Deep Neural Networks Understanding Transfer Learning in Deep Neural Networks: A Step-by-Step Guide In the realm of deep learning, transfer learning has become a powerful technique for leveraging pre-trained models to tackle new but related tasks. This approach not only reduces the time and computational resources required to train models from scratch but also often leads to better performance due to the reuse of already-learned features. What is Transfer Learning? Transfer learning is a machine learning technique where a model developed for one task is reused as the starting point for a model on a second, similar task. For example, a model trained to recognize cars can be repurposed to recognize trucks, with some adjustments. This approach is particularly useful when you have a large, complex model that has been trained on a vast dataset, and you want to apply it to a smaller, related dataset without starting the learning process from scratch. Key Components of Transfer Learning In transfer learning, there are several key components to understand: Base Model: This is the pre-trained model that was initially developed for a different task. It has already learned various features from a large dataset and can provide...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Batch Normalization – day 25

Understanding Batch Normalization in Deep Learning Understanding Batch Normalization in Deep Learning Deep learning has revolutionized numerous fields, from computer vision to natural language processing. However, training deep neural networks can be challenging due to issues like unstable gradients. In particular, gradients can either explode (grow too large) or vanish (shrink too small) as they propagate through the network. This instability can slow down or completely halt the learning process. To address this, a powerful technique called Batch Normalization was introduced. The Problem: Unstable Gradients In deep networks, the issue of unstable gradients becomes more pronounced as the network depth increases. When gradients vanish, the learning process becomes very slow, as the model parameters are updated minimally. Conversely, when gradients explode, the model parameters may be updated too drastically, causing the learning process to diverge. Introducing Batch Normalization Batch Normalization (BN) is a technique designed to stabilize the learning process by normalizing the inputs to each layer within the network. Proposed by Sergey Ioffe and Christian Szegedy in 2015, this method has become a cornerstone in training deep neural networks effectively. How Batch Normalization Works Step 1: Compute the Mean and Variance For each mini-batch of data, Batch Normalization first...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Hyperparameter Tuning with Keras Tuner _ Day 17

A Comprehensive Guide to Hyperparameter Tuning with Keras Tuner Introduction In the world of machine learning, the performance of your model can heavily depend on the choice of hyperparameters. Hyperparameter tuning, the process of finding the optimal settings for these parameters, can be time-consuming and complex. This guide will walk you through the essentials of hyperparameter tuning using Keras Tuner, helping you build more efficient and effective models. Why Hyperparameter Tuning Matters Hyperparameters are critical settings that can influence the performance of your machine learning models. These include the learning rate, the number of layers in a neural network, the number of neurons per layer, and many more. Finding the right combination of these settings can dramatically improve your model’s accuracy and efficiency. Introducing Keras Tuner Keras Tuner is an open-source library that provides a streamlined approach to hyperparameter tuning for Keras models. It supports various search algorithms, including random search, Hyperband, and Bayesian optimization. This tool not only saves time but also ensures a systematic exploration of the hyperparameter space. Step-by-Step Guide to Using Keras Tuner 1. Define Your Model with Hyperparameters Begin by defining a model-building function that includes hyperparameters: import keras_tuner as kt import tensorflow as tf...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Activation Function, Hidden Layer and non linearity. _ day 12

Understanding Non-Linearity in Neural Networks Understanding Non-Linearity in Neural Networks Non-linearity in neural networks is essential for solving complex tasks where the data is not linearly separable. This blog post explains why hidden layers and non-linear activation functions are necessary, using the XOR problem as an example. What is Non-Linearity? Non-linearity in neural networks allows the model to learn and represent more complex patterns. In the context of decision boundaries, a non-linear decision boundary can bend and curve, enabling the separation of classes that are not linearly separable. Role of Activation Functions The primary role of an activation function is to introduce non-linearity into the neural network. Without non-linear activation functions, even networks with multiple layers would behave like a single-layer network, unable to learn complex patterns. Common non-linear activation functions include sigmoid, tanh, and ReLU. Role of Hidden Layers Hidden layers provide the network with additional capacity to learn complex patterns by applying a series of transformations to the input data. However, if these transformations are linear, the network will still be limited to linear decision boundaries. The combination of hidden layers and non-linear activation functions enables the network to learn non-linear relationships and form non-linear decision boundaries. Mathematical...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Activation Function _ day 11

Activation Functions in Neural Networks Activation Functions in Neural Networks: Why They Matter ? Activation functions are pivotal in neural networks, transforming the input of each neuron to its output signal, thus determining the neuron’s activation level. This process allows neural networks to handle tasks such as image recognition and language processing effectively. The Role of Different Activation Functions Neural networks employ distinct activation functions in their inner and outer layers, customized to the specific requirements of the network: Inner Layers: Functions like ReLU (Rectified Linear Unit) introduce necessary non-linearity, allowing the network to learn complex patterns in the data. Without these functions, neural networks would not be able to model anything beyond simple linear relationships. Outer Layers: Depending on the task, different functions are used. For example, a softmax function is used for multiclass classification to convert the logits to probabilities that sum to one, which are essential for classification tasks. Practical Application Understanding the distinction and application of different activation functions is crucial for designing networks that perform efficiently across various tasks. Neural Network Configuration Example Building a Neural Network for Image Classification This example demonstrates setting up a neural network in Python using TensorFlow/Keras, designed to classify...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

3 Types of Gradient Decent Types : Batch, Stochastic & Mini-Batch _ Day 8

Understanding Gradient Descent: Batch, Stochastic, and Mini-Batch Understanding Gradient Descent: Batch, Stochastic, and Mini-Batch Learn the key differences between Batch Gradient Descent, Stochastic Gradient Descent, and Mini-Batch Gradient Descent, and how to apply them in your machine learning models. Batch Gradient Descent Batch Gradient Descent uses the entire dataset to calculate the gradient of the cost function, leading to stable, consistent steps toward an optimal solution. It is computationally expensive, making it suitable for smaller datasets where high precision is crucial. Formula: \[\theta := \theta – \eta \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} J(\theta; x^{(i)}, y^{(i)})\] \(\theta\) = parameters \(\eta\) = learning rate \(m\) = number of training examples \(\nabla_{\theta} J(\theta; x^{(i)}, y^{(i)})\) = gradient of the cost function Stochastic Gradient Descent (SGD) Stochastic Gradient Descent updates parameters using each training example individually. This method can quickly adapt to new patterns, potentially escaping local minima more effectively than Batch Gradient Descent. It is particularly useful for large datasets and online learning environments. Formula: \[\theta := \theta – \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}, y^{(i)})\] \(\theta\) = parameters \(\eta\) = learning rate \(\nabla_{\theta} J(\theta; x^{(i)}, y^{(i)})\) = gradient of the cost function for a single training example Mini-Batch Gradient Descent Mini-Batch Gradient Descent is...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Can we make prediction without need of going through iteration ? yes with the Normal Equation _ Day 6

Understanding Linear Regression: The Normal Equation and Matrix Multiplications Explained Understanding Linear Regression: The Normal Equation and Matrix Multiplications Explained Linear regression is a fundamental concept in machine learning and statistics, used to predict a target variable based on one or more input features. While gradient descent is a popular method for finding the best-fitting line, the normal equation offers a direct, analytical approach that doesn’t require iterations. This blog post will walk you through the normal equation step-by-step, explaining why and how it works, and why using matrices simplifies the process. Table of Contents Introduction to Linear Regression Gradient Descent vs. Normal Equation Step-by-Step Explanation of the Normal Equation Step 1: Add Column of Ones Step 2: Transpose of X (XT) Step 3: Matrix Multiplication (XTX) Step 4: Matrix Multiplication (XTy) Step 5: Inverse of XTX ((XTX)-1) Step 6: Final Multiplication to Get θ Why the Normal Equation Works Without Gradient Descent Advantages of Using Matrices Conclusion Introduction to Linear Regression Linear regression aims to fit a line to a dataset, predicting a target variable $y$ based on input features $x$. The model is defined as: $$ y = \theta_0 + \theta_1 x $$ For multiple features, it generalizes...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here

Regression & Classification with MNIST. _ day 4

  A Comprehensive Guide to Machine Learning: Regression and Classification with the MNIST Dataset Introduction to Supervised Learning: Regression and Classification In the realm of machine learning, supervised learning involves training a model on a labeled dataset, which means the dataset includes both input data and the corresponding output labels. Supervised learning tasks can be broadly categorized into two types: regression and classification.     Regression tasks aim to predict continuous numerical values. For example, predicting house prices based on various features such as location, size, and number of bedrooms. The output is a continuous value that can range over an infinite set of possible values. Common regression algorithms include linear regression, decision trees, and support vector regression.     Classification, on the other hand, deals with predicting discrete categorical values. The goal is to assign input data to one of several predefined classes. For instance, classifying emails as either spam or not spam, or recognizing handwritten digits as one of the digits from 0 to 9. The output is a discrete value representing the class label. Popular classification algorithms include logistic regression, support vector machines, decision trees, and neural networks. The MNIST Dataset: A Benchmark for Classification The MNIST...

Membership Required

You must be a member to access this content.

View Membership Levels

Already a member? Log in here